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Many processes dictated by chemical equilibria can be described by rectangular hyperbolae. Fitting chemical
responses to rectangular hyperbolae also allows the binding constants for these equilibria to be estimated.
Unfortunately, the propagation of error through the different methods of estimating the binding constants is
not well understood. Monte Carlo simulations are used to assess the accuracy and precision of binding constants
estimated using a nonlinear regression method and three linear plotting methods. The effect of the difference
between the physical response of the uncomplexed substrate and the response of the substrate-ligand complex
(i.e., the maximum-response range) was demonstrated using errors typical for a capillary electrophoresis system.
It was shown that binding constant estimates obtained using nonlinear regression were more accurate and
more precise than estimates from when the other regression methods were used, especially when the maximum-
response range was small. The precision of the nonlinear regression method correlated well with the curvature
of the binding isotherm. To obtain a precise estimate for the binding constant, the maximum-response range
needed to be much larger (over 70 times larger for the conditions used in this experiment) than the error
present in individual data points.

Introduction

Rectangular hyperbolae have been used to describe many
physicochemical properties influenced by chemical equilibria1

including UV-vis absorption,2-7 NMR chemical shifts,8-13

Michaelis-Menten kinetics,14-21 ion transport across mem-
branes,22 pharmacokinetics,23-26 and even algal growth rates.27-29

These studies are based on a certain physical response dictated
by a 1:1 interaction between a substrate and a ligand. Equations,
all taking the form of rectangular hyperbolae, have been
developed independently in various research areas such as
spectrophotometry, NMR, and Michaelis-Menten kinetics to
describe the effect of the equilibrium (see Table 1).1 In all cases,
the physical response is determined by two constants: the
equilibrium constant (either expressed as a binding or dissocia-
tion constant) and the maximum-response range (representing
the difference between the response at zero and infinite ligand
concentrations).

Recently, it has been shown that in capillary electrophoresis
(CE) analyte mobility in the presence of analyte-additive
interactions can be described according to30-40

whereµep
A is the net electrophoretic mobility of the analyte,ν is

a correction factor which normalizesµep
A to conditions where

[C] approaches zero, [C] is the concentration of the complex-
ation additive (analogous to [L]),KAC is the formation constant
of the complex AC, andµep,AC andµep,A are the electrophoretic
mobilities of the analyte-additive complex AC and the un-
complexed analyte A, respectively. Clearly, eq 1 is analogous
to the other equations listed in Table 1.

The equilibrium constants and maximum-response ranges for
the equations listed in Table 1 are usually estimated by
measuring the response over a range of ligand concentrations
followed by one of several regression procedures. Although a
nonlinear regression can be used to solve the constants directly,
eq 1 is often linearized, allowing the constants to be estimated
from the slopes and intercepts of straight lines.1 The linearized
equations have acquired different names in different research
fields but can be referred to most generally as double-reciprocal
(also referred to as Lineweaver-Burk15 or Benesi-Hildebrand2

plots),y-reciprocal, andx-reciprocal (also referred to as Eadie16

or Scatchard41 plots) methods. The linearizations of eq 1 are
shown in Table 2.

Although the nonlinear regression and each of the three
linearizations are based on the same equation, they often give
different estimates and confidence intervals for the constants
when applied to the same data set.42-45 Linearizing the
rectangular hyperbola invalidates some of the assumptions made
in performing the least-squares regression analysis, including
introducing error into the independent variable and transforming
the error in the data to a non-Gaussian distribution.1 The data
spacing is also changed, which alters the weight on certain
measurements. These problems can often be overcome if the
data are weighted according to the functions listed in Table 2.1

Because of the complexity of the regression calculations, it
is difficult to show how error is propagated through the different
methods analytically. Dowd and Riggs43 first used Monte Carlo
analyses to compare the different calculation methods and their
estimates of the constants. Since then, a number of researchers
have used Monte Carlo analyses to simulate binding experi-
ments.46-53 It has been shown that the nonlinear regression
method minimizes both the error and the bias in the estimates
of the constants. Unfortunately, the effect of experimental
parameters on the reliability of the estimated binding constants
has not been studied thoroughly. We have recently demonstrated
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(1)

197J. Phys. Chem. A1999,103,197-202

10.1021/jp982917e CCC: $18.00 © 1999 American Chemical Society
Published on Web 12/11/1998



the effect of the ligand concentration range on the accuracy and
precision of binding-constant estimates using Monte Carlo
analyses.54

Another concern is the effect of the maximum-response range
on the reliability of the binding-constant estimate. As shown in
Figure 1, if the maximum-response range is zero, the binding
isotherm takes the shape of a straight line, making it impossible
to estimate the binding constant. The specific constants that
determine the maximum-response range in UV-vis absorption,
NMR, Michaelis-Menten kinetics, and CE are listed in Table
1.

In this paper, the effect of the maximum-response range on
the accuracy and precision estimated binding constants is

studied. Nonlinear regression is compared with the three
linearizations of the binding isotherm. Terminology developed
for CE (eq 2) will be used because this is the primary research
interest of our group (i.e., analyte and additive are analogous
to substrate and ligand, respectively). Therefore, the constants
and errors in the data are typical for CE. It should be emphasized
that although CE is used as an example in this paper the
equations are analogous to those used in many other research
areas (see Table 1), allowing the conclusions presented here to
be applied to complexation chemistry in general.

Methods

Monte Carlo simulations of a dynamic-complexation CE
experiment were performed using a Visual Basic macro in
Microsoft Excel 5.0 on a Pentium PC. The simulations were
made assuming the following:µep,A ) -2.5× 10-4 cm2‚V-1‚s-1;
K ) 250 M-1; separation potential) -30 kV; total capillary
length) 57 cm; length to the detector) 50 cm. The additive
concentrations used to perform the simulations were 5, 23.75,
42.5, 61.25, and 80 mM which were shown in an earlier paper
to approximately cover the optimum concentration range forK
) 250 M-1.54 Simulations were made forµep,AC ranging from
-1 × 10-4 to -2.5× 10-4 cm2‚V-1‚s-1. Equation 1 was used
to calculate the true net analyte mobility at each additive
concentration. The random number generator in Excel 5.0 was
used to produce an experimental mobility according to a normal
distribution which had a mean equal to the true mobility and a
standard deviation of 8.75× 10-7 cm2‚V-1‚s-1. Two experi-
mental mobilities were generated for each additive concentration.
Four experimental mobilities were generated for an additive

TABLE 1: Equations and Maximum-Response Ranges for Absorbance, NMR, Michaelis-Menten Kinetics and Capillary
Electrophoresis

technique equation maximum-response range

absorbance
(A - AS)

b
)

[S0](εSL - εS)K[L]

1 + K[L]
b[S0](εSL - εS)

NMR (δ - δS) )
(δSL - δS)K[L]

1 + K[L]
(δSL - δS)

Michaelis-Menten kinetics V )
Vm[S]

Km + [S]
Vm

capillary electrophoresis (νµeq
A - µep,A) )

(µep,AC - µep,A)KAC[C]

1 + KAC[C]
(µep,AC - µep,A)

TABLE 2: Equations Used in Capillary Electrophoresis and Variances in the Transformedy for the Different Calculation
Methods

calculation method equation σy′
2 a

nonlinear regression (νµep
A - µep,A) )

(µep,AC - µep,A)KAC[C]

1 + KAC[C]
σy

2

double-reciprocal
1

(νµep
A - µep,A)

) 1
(µep,AC - µep,A)KAC

1
[C]

+ 1
(µep,AC - µep,A)

σy
2

(νµep
A - µep,A)

4

y-reciprocal
[C]

(νµep
A - µep,A)

)
[C]

(µep,AC - µep,A)
+ 1

(µep,AC - µep,A)KAC

[C]2σy
2

(νµep
A - µep,A)

4

x-reciprocal
(νµep

A - µep,A)

[C]
) -KAC(νµep

A - µep,A) + KAC(µep,AC - µep,A) (KAC + 1
[C])2

σy
2

a σy′
2 is the variance of the transformedy; σy

2 is the variance in (νµep
A - µep,A); the weight for each point is equal to 1/σy′

2.

Figure 1. Binding isotherms with different maximum-response ranges.
The constants used to draw the curves areK ) 250 M-1; µep,A )
0.000 25 cm2‚V-1‚s-1; and µep,AC ) 0.000 25 ([), 0.000 22 (]),
0.000 19 (9), 0.000 16 (0), 0.000 13 (b), and 0.000 10 cm2‚V-1‚s-1

(O).
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concentration of 0 mM, again with a standard deviation of 8.75
× 10-7 cm2‚V-1‚s-1, to calculateµep,A. The experimental
mobilities were then used to estimate the equilibrium constant
according to one of the four calculation methods. All regressions
were made according to the least-squares variance-covariance
method. This procedure was repeated 1000 times for each
calculation method at eachµep,AC. A total of 23 values forµep,AC

were tested, giving rise to over 2.25 million simulated measure-
ments, emphasizing the necessity of the computational approach
used.

Results and Discussion

Distribution of Binding-Constant Estimates. Figure 2
shows the distributions of the binding constants estimated using
the nonlinear regression and the three linear transformations.
The markers represent the medians of the distributions. Medians
were chosen to represent the central tendency of the distributions
because of their robustness and insensitivity to the grossly
inaccurate estimates that sometimes occur when experiments
are performed under nonideal conditions. The dashed lines
bound the range of the distribution that includes 95% of the
binding-constant estimates (i.e., the 95% range). Therefore, 2.5%
of the binding-constant estimates were above the upper dashed
line, and 2.5% of the estimates were below the lower dashed
line.

The 95% range of the estimated binding constants gives an
indication as to the precision of the method under a certain set

of conditions. A narrow range of binding constants indicates
that an experiment performed under those conditions is more
likely to give an estimate that is close to the actual value of the
binding constant. As expected, the range of binding-constant
estimates generally increased as the maximum-response range
(i.e., µep,AC - µep,A) decreased. However, there were some
differences in the results obtained from the different calculation
methods. The 95% ranges for thex-reciprocal plots did not
increase as drastically as with the other methods, but the results
were significantly biased when the maximum-response range
was small. Weighting narrowed the 95% range when the
y-reciprocal plot was used but had little effect when the double
reciprocal orx-reciprocal plots were used. Because the error in
each data point was equal, there was no difference between the
unweighted and weighted nonlinear regression methods. Figure
3 compares the magnitudes of the 95% ranges for the different
calculation methods. The ranges for the nonlinear, double-
reciprocal, and weightedy-reciprocal plots were similar, indicat-
ing that the binding constant should be estimated using one of
these methods. The unweightedy-reciprocal plots gave the
widest 95% ranges. Narrow 95% ranges were achieved using
x-reciprocal plots, but bias makes it an unsuitable method for
estimating the binding constant when the maximum-response
range is small.

Comparing the medians of the distributions to the true value
of the binding constant (K ) 250 M-1 in this case) demonstrates
the accuracy of the different calculation methods. As shown in
Figure 4, bias did become significant as the maximum-response

Figure 2. Distributions of the binding constants estimated using the (A) double-reciprocal, (B)y-reciprocal, (C)x-reciprocal, and (D) nonlinear
regression methods for (µep,AC - µep,A) ) 0 to 15× 10-5 cm2‚V-1‚s-1. The markers] andO represent the medians of the unweighted and weighted
methods, respectively. The dashed lines define the 95% ranges for the unweighted (- -) and weighted (- - -) methods.
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range decreased, especially when data were plotted using
x-reciprocal plots. Bias is troublesome because it cannot be
eliminated through replicate measurements. Although the preci-
sion of the constants estimated usingx-reciprocal plots was
good, the accuracy was not. In this simulation,x-reciprocal plots
consistently gave the wrong value forK when the maximum-
response range was small. Bias was also present in the double-
reciprocal andy-reciprocal plots whenµep,AC approachedµep,A.
When the maximum-response range was small, weighting in
the double-reciprocal andy-reciprocal plots overcompensated
the error, giving rise to a slightly positive bias. Overall, bias
was least significant when the nonlinear regression method was
used. The combination of higher accuracy and higher precision
makes the nonlinear regression the most reliable method for
estimating the binding constant, especially when the maximum-
response range is low. This corresponds well with a previous
paper, which demonstrated that the nonlinear regression method
makes more reliable binding-constant estimates when the
additive concentrations are above or below the optimum range.54

Because of the general availability of personal computers, there
does not seem to be any compelling reason to continue using
the linear transformations to estimate binding constants. Al-
though the linear transformations should not be used to estimate
the binding constant, they are still useful in determining if a
1:1 equilibrium model accurately describes the data.1,55

Semiempirical Prediction of the 95% Range.In an earlier
paper, we were able to show that the effect of the additive

concentration range on the precision of the binding-constant
estimates (i.e., the 95% range) could be explained by the amount
of curvature in the binding isotherm.54 The difference in the
slope of the curve at the lowest and highest additive concentra-
tions gives a measure of the amount of curvature present in the
isotherm. The slope at any point on the isotherm is equal to the
derivative of eq 1 with respect to [C]:

Clearly, the slope is influenced by the maximum-response range
as well as the binding constant and the additive concentration.
As shown in Figure 1, the amount of curvature in the binding
isotherm decreases as the maximum-response range decreases.
When the fraction of analyte complexed is high, the slope of
the isotherm approaches zero. When the fraction of analyte
complexed is low, the slope of the isotherm approaches

Therefore, when data are collected over a large portion of the
isotherm, the difference in slope between the lowest and highest
additive concentrations is approximately

The difference in slope is almost linearly related to the
maximum-response range if data are collected over a substantial
portion of the binding isotherm.

Figure 5A shows the correlation between the reciprocal of
the difference in the slope and the relative 95% range of the
binding-constant estimates. The correlation is excellent up to a
relative 95% range of 1 (i.e., the 95% range is equal to 250
M-1 in this case). Above 1, the relative 95% ranges begin to
increase faster than the reciprocal of the difference in the slope.
Figure 5B compares the curve predicted from the correlation
in Figure 5A to the 95% ranges generated by the simulations.
The curve corresponds well to the data, indicating that the
difference between the slopes at the lowest and highest additive
concentrations accurately describes the effect of the maximum-
response range on the precision of the binding-constant estimate.

The magnitude of the maximum-response range necessary
to make a precise estimate of the binding constant was much
higher than expected. As can be seen in Figure 5B, for 95% of
the binding-constant estimates to be within 10% of the true value
of the binding constant (i.e., 95% range) 50 M-1 in this case),
(µep,AC - µep,A) must be 6.3× 10-5 cm2‚V-1‚s-1 or higher.
This is 72 times the standard deviation of the individual data
points. Although the size of the maximum-response range
required to achieve a certain level of precision will depend on
other factors as well (e.g., number of data points, range of
additive concentrations, data spacing, etc.), it is clear that the
maximum-response range must be significantly larger than the
error in the data points.

In binding experiments, the errors in the individual data points
and the maximum-response range are linked, similar to the way
that the equilibrium constant is linked to the ligand concentration
range.54 To make a reliable estimate of the binding constant,
the maximum-response range must be maximized, but this
cannot be done at the expense of the error in the data. Therefore,
experiments must be designed to both maximize the response
range and minimize the error in the data. An examination of

Figure 3. 95% ranges of binding constants estimated using the double-
reciprocal (4), weighted double-reciprocal (0), y-reciprocal (O),
weightedy-reciprocal (3), x-reciprocal (]), weightedx-reciprocal (∞),
and nonlinear regression methods (:) for (µep,AC - µep,A) ) 0 to 15×
10-5 cm2‚V-1‚s-1.

Figure 4. Bias in the distribution of binding constants estimated using
the double-reciprocal (4), weighted double-reciprocal (0), y-reciprocal
(O), weightedy-reciprocal (3), x-reciprocal (]), weightedx-reciprocal
(∞), and nonlinear regression methods (:) for (µep,AC - µep,A) ) 0 to
5 × 10-5 cm2‚V-1‚s-1.

∂(νµep
A )

∂[C]
)

(µep,AC - µep,A)KAC

(1 + KAC[C])2
(2)

∂(νµep
A )

∂[C]
) (µep,AC - µep,A)KAC (3)

∆slope≈ (µep,AC - µep,A)KAC (4)
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the maximum-response ranges listed in Table 1 gives some
suggestions as to how this can be done. In UV-vis absorbance,
the maximum-response range can be increased by increasing
the optical path length or the concentration of the substrate. In
NMR studies, the maximum-response range cannot be adjusted
because the chemical shifts are intrinsic properties of the
substrate and the substrate-ligand complex. However, the error
in the chemical responses decreases as the field strength of the
instrument is increased, allowing a more precise estimate of
the binding constant. Methods for increasing the maximum-
response range in Michaelis-Menten kinetics and CE are less
clear. Because data are collected as reaction times or migration
times, perhaps emphasis should be placed on reducing the error
in the time measurements.

Conclusions

It was shown that the nonlinear regression method obtained
the most accurate and precise estimates for the binding constant
as the maximum-response range was decreased. This, combined
with the evidence that the nonlinear regression method is
superior to the linear transformations when data are collected
outside the ideal additive concentration range,54 strongly sug-
gests that the nonlinear regression method should be used when
estimating binding constants.

It was also shown that the difference in the slope of the
binding isotherm at the lowest and highest additive concentra-
tions is a good indicator of the precision of a binding constant
estimated using a certain set of conditions. To make a good
estimate of the binding constant, the maximum-response range
must be significantly higher than the error in the individual data
points.
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